Rényi entropy power inequality and a reverse

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rényi entropy power inequality and a reverse

This paper is twofold. In the first part, we derive an improvement of the Rényi Entropy Power Inequality (EPI) recently obtained by Bobkov and Marsiglietti [10]. The proof largely follows Lieb’s [22] approach of employing Young’s inequality. In the second part, we prove a reverse Rényi EPI, that verifies a conjecture proposed in [4, 23] in two cases. Connections with various p-th mean bodies in...

متن کامل

Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

متن کامل

On Rényi entropy power inequalities

This paper is a follow-up of a recent work by Bobkov and Chistyakov, obtaining some improved Rényi entropy power inequalities (R-EPIs) for sums of independent random vectors. The first improvement relies on the same bounding techniques used in the former work, while the second significant improvement relies on additional interesting properties from matrix theory. The improvements obtained by th...

متن کامل

A reverse entropy power inequality for log-concave random vectors

We prove that the exponent of the entropy of one dimensional projections of a log-concave random vector defines a 1/5-seminorm. We make two conjectures concerning reverse entropy power inequalities in the log-concave setting and discuss some examples. 2010 Mathematics Subject Classification. Primary 94A17; Secondary 52A40, 60E15.

متن کامل

On the entropy power inequality for the Rényi entropy of order [0, 1]

Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive a Rényi entropy power inequality for log-concave random vectors when Rényi parameters belong to (0, 1). Furthermore, the estimates are shown to be somewhat sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2018

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm170521-5-8